0=(-2t^2+1)

Simple and best practice solution for 0=(-2t^2+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(-2t^2+1) equation:



0=(-2t^2+1)
We move all terms to the left:
0-((-2t^2+1))=0
We add all the numbers together, and all the variables
-((-2t^2+1))=0
We calculate terms in parentheses: -((-2t^2+1)), so:
(-2t^2+1)
We get rid of parentheses
-2t^2+1
Back to the equation:
-(-2t^2+1)
We get rid of parentheses
2t^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| -8+5/6y=-28 | | -3x-9=−3x−9=x-1x−1 | | 3x+1/2(2x+6)=6x+1. | | (7/9)x=-42 | | 1/3(3-z)=z | | 9(7-4z)-3z=0 | | -2(5x-2)+6=-2(3x+1)=16 | | 0=8(-2t^2+1)(t+3) | | -79x+3=14 | | 16w^2-7w+9=0 | | 4s+24=48 | | x=19=3x+9 | | 55+w=343 | | 5+2x+^6=13 | | 12w-55=343 | | 12x+11=4x+243 | | .2n-n=480 | | 343+12w=55 | | x=-32+5x | | 156z=1404 | | 25.68=2x-632 | | 8x+37=141 | | 3+55x=-16+18x | | 5=m+9/7 | | f+–7=–5 | | 5x+28=x+12 | | -6=-2/5v | | 4x-9=-7x^2 | | 2/(3x-1)+3(3x+1)=5/3x | | 3x+2x−5=6−11+5x | | 25n+110=12n+48 | | 3u+2=20u |

Equations solver categories